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Abstract 

A characterization of the exponential distribution was obtained by Grosswald et 
al. (1980) using the relevation transform introduced by Krakowski (1973). Here we 
obtain an improved version of the result in Grosswald et al. (1980). 

CONVOLUTION; LIFE DISTRIBUTIONS 

1. Introduction 

The convolution of two distribution functions F and G is given by 

(1.0) (F* G)(x)= F(x-u)G(du), -oc <x< o. 

Suppose the supports of F and G are contained in [O, cx). Then 

(1.1) (F * G)(x) = F(x - u)G(du), x > O. 

It is the distribution of the time to failure of the second of two components when the 
second component with life distribution G is placed in service on the failure of the first 

component with life distribution F, assuming that the replacement component is new on 
installation. However, suppose that the failed component (with life distribution F) is 

replaced by another one of same age (with life distribution G). The survival function of 
the time to system failure (i.e failure of both components) is called the relevation of the 
survival function F(t) = 1 - F(t) with G(t) = 1 - G(t). It is denoted by (F#G)(t) and 
was introduced by Krakowski (1973). Reliability applications of relevation transform 
are given in Baxter (1982). Note that 
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(F#G)(t) = P(system survives beyond time t) 

= P(first component with survival function F survives beyond time t) 

+ P(first component with survival function F fails some 
time before t and the second component with survival 
function G survives beyond time t given that it has 
survived up to the time to failure of the first component) 

(1.2) t 
(1.2) = F(t) + P[the second component survives beyond time t 

given that it has survived beyond time u when 
the first component failed] dF(u) 

r t P(life of second component > t) 
F( o P(life of second component > u) 

=F(t) + G()dF(U) G() dF(u) 

=f( (t) - (u) . 
J G(u) 

Even though this derivation is known, we give it here for completeness. Note that 
(F#G)(t) # (G #F)(t), unlike (F * G)(t) = (G * F)(t). It is easy to check that 

(1.3) (F * G)(t) = F(t) - G(t - u)dF(u). 
Jo 

It can be seen from (1.2) and (1.3) that 

(1.4) (F#G)(t) = (F * G)(t), t >0 

iff 

(1.5) F rt G(t) . (1.5) S (J u) dF(u)=J G(t-u)dF(u), t _0. 
G(u) o 

Grosswald et al. (1980) proved that (1.5) holds for all F(-) if and only if G is an 
exponential survival function among the class of all G which can be expressed in the 
form of power series. They conjectured that the result should be true if 6 has a 
continuous derivative but need not have power series expansion. Here we give a proof of 
this conjecture under even weaker assumptions. 

2. Preliminaries 

We first state and prove a couple of results useful later in our discussion. 

Proposition 2.1. Let I = [0, c) or [0, oc). Suppose h : I-- R is continuous, h(0) = 0, 
h (0) = a, and for any x E I, there exists 0 < < x such that 

(2.1) h(x)= h(4) + h(x -) 
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Then h(x) = ax for all x EI. 

Proof. Let x E , x 0 and let h (x)/x = f,. We first claim that there exists 0 < ' < x 
such that h( ')/' = f. Indeed we let r be as in (2.1). Then 

h(x)-h () h(x -) 
x-4 x-4 

Suppose without loss of generality that h(x - i) > fi(x - 5). The equation (2.1) implies 
that 

h(x)- h(r) h(x) 

A direct calculation shows that ~h(x) >_xh(i), i.e. h()-< fi. Now apply the inter- 
mediate value theorem to h(t) - ft on the interval determined by $ and x - r. There 
exists r' such that h (') - fi' = 0 and the claim follows. 

Next we show that f = a. Let 

=inf y EI:y O, hO(y) = f. 

Then yo = 0 (for, if yo > 0, then by the continuity of h, (h(yo)/yo) = P, and applying the 
claim made above to yo, we can find 0 < ' < yo such that h (')/<' = P. This contradicts 
the fact that yo is the infimum). Hence there exists a sequence x, - 0 such that 

h(xn)/xn - f. It follows that 

h(x,) = lim = h+(O)= a. 
n-c X,n 

From this, we conclude that h(x)= ax. 

Proposition 2.2. Let g: [a, b]- R be continuous, 1: [a, b]- R be increasing, and 

suppose the set of points of increase D of I is not contained in {a, b . Then there exists 
a < < b such that 

(2.2) fg(t)dl(t) = g()(l(b) - 1(a)). 

Remark. By the mean value theorem of integration (Apostal (1957), p. 213) there 
exists a < _ b such that the above hold. We are showing that ~ can actually be chosen 
to be different from a or b. 

Proof. Let a = mine[a,bi g(x) = g(xl), fi = maxe[a,b g(x) = g(x2) and G(x)= 
aJ g(t)dl(t). Without loss of generality, assume that x < x2. Then 

a(l(b) - I(a)) _ G(b) fi(l(b) - 1(a)). 

If G(b)= a(l(b) - (a)), then D is contained in {x:g(x)= a). By assumption, D 
contains points other than a and b. We can then choose ~ - a, b such that g(<) = a, and 
hence 
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b 

g(~)(l(b)- I(a))= g(t)dl(t). 

A similar argument holds for the case G(b) = l/(l(b) - I(a)). Finally if 

a(l(b) - 1(a)) < G(b) < 3(l(b) - 1(a)), 

then, by the continuity of g, we can find x', x2 (in the neighbourhood of x,, x2 
respectively) such that a < x, < x2 < b, and 

g(x{)(l(b) - 1(a)) _ G(b) < g(x')(l(b) - 1(a)). 

The intermediate value theorem applied to g in [x1, x2] implies that there exists : 7 a,b 
(actually, xl < ~ < x2) such that 

Tb 

G() = g(t)d(t). 

3. Main theorem 

We now state and prove the main theorem characterizing the exponential distribution. 

Theorem 3.1. Suppose G and F are continuous survival functions and G (0) exists. 
Further suppose that for any x > 0, F has a point of increase in (0, x). If G satisfies 

xG(x) 
(3.1) G(x - t)dF(t) = dF(t), for all x where G(x) - 0, 

G(x - t)dFG(t) 

then G is exponential, that is, G(x)= e-X, x > 0 for some a > 0. 

Proof. Let c = sup{x: G(x)> 0}. Let h be the non-negative function such that 
h(0) = 0 and e-h(x) = G(x), x EI = [0, c). Then h (0) exists by hypothesis and 

T {e-h(x-t) - e-h(x)+h(t)}dF(t) = 0, xEI 

by (3.1). Note that g(t) =e-h(x-t) - e-h()+h(t), O_ t < x and l(t)=F(t) satisfy the 
conditions in Proposition 2.2. Hence there exists 0 < <x such that g() = 0, or 
equivalently h(x) - h(x - ) - h(c) = 0. Since this equation holds for all x, x EI, by 
Proposition 2.1, h(x) = ax where a = h'+(0) > 0. Hence G(x) = e -x, x EI. Since by 
assumption G is continuous, I must be equal to [0, oc). 
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